主会场:Keynote | 第17届中国R会议 & 2024 X 智能大会 & 2024 数据科学国际论坛联合会议
2024-06-20
第17届中国R会议 & 2024 X 智能大会 & 2024 数据科学国际论坛联合会议将于2024年7月20-24日在中国人民大学召开,本次会议由中国人民大学应用统计科学研究中心、中国人民大学统计学院、统计之都和中国商业统计学会人工智能分会(筹)主办,由中国人民大学统计学院数据科学与大数据统计系承办,得到宽德投资、明汯投资、和鲸科技、子博设计赞助支持。
参会报名
本次会议时间、地点及形式如下:
2024.7.20-21 (9:00-17:30) 线下:中国人民大学逸夫楼、立德楼;线上:学说直播平台
2024.7.22-24(19:00-21:00)线上:学说直播平台
线下参会请扫描下方二维码报名;线上直播码将于会议前给出,请持续关注统计之都后续推送。
Keynote
下面为您奉上本次会议主会场演讲介绍,7月20日主席为常象宇和魏太云,7月21日主席为闫军和吕晓玲。
AI for Mathematics
董彬
时间:
7月20日 9:30-10:30
个人简介:
董彬,北京大学,北京国际数学研究中心教授、国际机器学习研究中心副主任。主要研究领域为机器学习、科学计算和计算成像。2014年获得求是杰出青年学者奖,2022年受邀在世界数学家大会(ICM)做45分钟报告,2023年获得新基石研究员项目,同年获得王选杰出青年学者奖。
报告摘要:
本报告将重点关注近年来人工智能在辅助数学探索中的一些进展。首先, 我们将回顾人 工智能为数学研究赋能的背景和一些发展现状,包括机器学习在激发数学家进行前沿探索中的应用。其次,我们将介绍目前正在进行的一些工 作的初步成果。最后,我们将展望人工智能与数学交叉研究领域的未来机遇与挑战。
大模型时代下的AI4Science发展和设想
刘红升
时间:
7月20日 10:30-11:30
个人简介:
中国科学技术大学少年班学院本科,北卡罗莱纳大学教堂山分校统计学博士。现任华为2012实验室昇思MindSpore架构师/AI4Sci Lab负责人。基于昇腾AI基础软硬件及昇思MindSpore AI框架构建了面向AI4Sci领域的MindScience开源框架,覆盖生物、化学、流体、气象、电磁等多个领域。
报告摘要:
本次报告回顾AI for Science在各领域的最新业界进展,并介绍华为AI4Sci Lab基于昇腾AI基础软硬件及昇思MindSpore AI框架在大模型赋能各方向的最新研究与未来展望。
经济系统数字孪生
陈松蹊
时间:
7月21日 9:30-10:30
个人简介:
中国科学院院士;北京大学统计科学中心创始主任。中国概率统计协会理事长,数理统计学会(IMS)、美国统计学会和美国科学促进会会士,国际统计学会(ISI)当选会员。
报告摘要:
一个系统的数字孪生是基于系统模型和观测数据的融合的高精度数值仿真,其代表对该系统认知的最高境界。我将讨论建立中国经济系统数字孪生的重要性和可行性,及对高时空分辨率的经济数据集与建立大计量统计模型的要求。
First Principles of Advanced Data Analysis: the Prediction Principle
Liu Chuanhai
时间:
7月21日 10:30-11:30
个人简介:
Chuanhai Liu earned his master's degree in Probability and Statistics from Wuhan University in 1987 and his PhD in Statistics from Harvard University in 1994. He worked at Bell Laboratories for ten years starting in 1995 and at Texas A&M as an Associate Professor in Spring 2004. Since 2005, he has been a Professor of Statistics at Purdue University. His research interests include the foundations of statistical inference, statistical computing, and applied statistics. Much of his work on iterative algorithms, such as Quasi-Newton, EM, and MCMC methods, is discussed in his book titled 'Advanced Markov Chain Monte Carlo Methods' (2010), co-authored with F. Liang and R. J. Carroll. His work on the foundations of statistical inference, developing a new inferential framework for prior-free probabilistic inference, is included in his book titled 'Inferential Models: Reasoning with Uncertainty' (2015), co-authored with R. Martin. For his research on statistical computing, he spent several years experimenting with a multi-threaded and distributed R software system called SupR for big data analysis. Currently, he is working on topics for a new book titled 'Scientific Modeling: : Principles, Methods and Examples.'
报告摘要:
This era of big data is fascinating for data analysis in particular and statistics in general. It has also clearly revealed more than ever different scientific attitudes toward data analysis and statistical research from different perspectives. As statisticians, we see both challenges and responsibility for foundational developments in both statistical inference and scientific modeling. This talk introduces a new principle, called the prediction principle. We argue that this principle can serve as a first principle for valid and efficient inference by exploring its implications in three key research directions: (a) how the prediction principle can be used to refine both the principle of maximum likelihood and the likelihood principle, (b) how statistical inference should be formalized, as the required reasoning is deductive, and (c) how a general theory of scientific modeling might be achievable, despite the inherent challenges of inductive reasoning. These discussions are illustrated using seemingly simple but unsolved problems in high-dimensional statistics and deep learning models. To prompt deeper reflections, the talk concludes with a few challenging problems.
关于会议
主办方:
·中国人民大学应用统计科学研究中心
·中国人民大学统计学院
·统计之都
·中国商业统计学会人工智能分会(筹)
赞助方:
·宽德投资
·明汯投资
·和鲸科技
·子博设计
联系方式
·公众号:统计之都
·会议邮箱:chinar-ifods-2024@cosx.org