“统计大讲堂”第221讲预告:随机网络中的互易性和极值依赖性
2023-05-28
报告时间:2023年5月30日
上午10:00
报告地点:中国人民大学明德主楼1016
(腾讯会议ID:638 654 641)
报告嘉宾:王天栋
报告主题:随机网络中的互易性和极值依赖性
报告摘要
Reciprocity and Large Degree Dependence in Random Networks
Users of social networks display diversified behavior and online habits. For instance, a user's tendency to reply to a post can depend on both the user and the person posting. For convenience, we group users into aggregated behavioral patterns, focusing here on the tendency to reply or reciprocate to a message. The reciprocity feature in social networks reflects the information exchange among users. We study properties of a preferential attachment model with heterogeneous reciprocity levels, and give the growth rate of model edge counts as well as prove convergence of empirical degree frequencies to a limiting distribution. This limiting distribution is not only multivariate regularly varying, but also has the property of hidden regular variation.
作者简介
王天栋,上海数学中心青年研究员,博士生导师。2013年毕业于澳大利亚国立大学精算专业,取得荣誉学士学位;2019年毕业于美国康奈尔大学运筹学与信息工程学院,取得博士学位;2019年9月至2022年8月任职于美国得州农工大学统计系,担任助理教授。2022年9月至今任职于上海数学中心,担任青年研究员。2017年以来在Stochastic Processes and Their Applications, Extremes, Statistical Computing等国际学术期刊上发表高水平论文13篇。