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Abstract
In this paper, the geometric process model is used for analyzing constant stress

accelerated life testing. The generalized half logistic lifetime distribution is consid-
ered under progressive type-II censoring. Statistical inference is developed on the
basis of maximum likelihood approach for estimating the unknown parameters and
getting both the asymptotic and bootstrap confidence intervals. Besides, the pre-
dictive values of the reliability function under usual conditions are found. Moreover,
the method of finding the optimal value of the ratio of the geometric process is pre-
sented. Finally, a simulation study is presented to illustrate the proposed procedures
and to evaluate the performance of the geometric process model.
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1. Introduction

The modern advancement in manufacturing electronic and mechanic products may con-
tribute to delay failures. To overcome this difficulty, accelerated life testing (ALT) is applied
by exposing test units to severe conditions (stresses) in order to get failure data rapidly. Then,
the results will be extrapolated to the normal use conditions through a certain function that
relates one of the parameters of the lifetime distribution with the stress(es). For more details
on statistical inference of costant stress ALT, see for example: Nelson (1990), Abdel-Ghaly et
al. (1998), Escobar and Meeker (2006), Aly and Bleed (2013), Abdel-Ghaly et al. (2016a), and
Abdel-Ghaly et al. (2016b).

Recently, Geometric process (GP) became a beetter choice for analyzing ALT because of
its simple nature, since it does not require a function to reparametrize the original parameters
with a stress (s). Lam(1988 a,b) first introduced the GP. He studied a new repair replacement
model for a deteriorating system. Iin this model, both the successive survival times of the
system, and the consecutive repair times after failure, form a GP which is stochastically non-
increasing for the first and non-decreasing for the second. Lam and Chan (1998) studied the
statistical inference for the GP assuming lognormal distribution. Huang (2011) was the first
who applied the GP model for analyzing ALT. He stated that since in ALT, lifetimes would be
stochastically decreasing with respect to increasing stress level, then the GP model may be a
natural approach to study such a problem. He considered constant stress accelerated life test
(CSALT) and used the exponential lifetime distribution under each of complete sampling, type-
I and type-II censoring. He used maximum likelihood estimation (MLE) method and derived
the asymptotic confidence Interval (CI) for estimators and compared them with the parametric-
bootstrap confidence intervals (CI). Zhou et al. (2012) used GP for implementing CSALT based
on progressive type-I hybrid censoring. Considering, Rayligh lifetime distribution, they got the
ML estimators and bootstrap CI.

Using different lifetime distributions and assuming complete data, several authors applied
GP for estimating CSALT. For example; Kamal et al. (2012), Kamal et al. (2013), and Anwar
et al. (2013) used Weibull, Pareto, and Marshall-Olkin extended exponential distributions,
respectively. While, Rahman et al. (2016) and Ullah et al. (2017) used generalized exponential
and generalized Rayleigh Distributions, respectively. On the other hand, under type-I censoring,
Kamal (2013), Saxena et al. (2013) and Anwar et al. (2014) used Weibull, log-logistic, and
Marshall-Olkin extended exponential distributions, respectively.

Type-I and type-II censoring schemes are the most commonly used in reliability engineering
experiments. In the experiment, some units fail and the other are censored by assuming an
ending time of the experiment or after a prespecified number of failures, using type-I and type-
II, respectively. There is no possibility to remove any unit while the experiment is running.
While, progressive censoring scheme allows some pre-determined units to be removed from the
test at certain points of time before the end of the experiment. Using progressive censoring, the
items are removed from life test throughout the duration of the test. This means that at various
stages of the test, some of the survivors are withdrawn from further observations. Sample units
which remain after each sample stage of censoring continue to be observed until failure or a
subsequent stage of censoring.

In this paper, the generalized half-logistic (GHL) distribution is considered in ALT to rep-
resent the lifetime. For other applications different from ALT, several authors used GHL. For
example; Arora et al. (2010) obtained maximum likelihood estimators (MLE) and the asymp-
totic variance of GHL under progressive type-I censoring with changing failure rates. Under
progressive Type-II censoring, Kim et al. (2011) derived approximated profile MLE of the s-
cale parameter of GHL. Seo et al. (2013) derived ML estimators of the unknown parameters
of the generalized half logistic (GHL) distribution under type-II hybrid censoring. They also
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obtained approximate CI using asymptotic variance-covariance matrix based on ML approach.
Balakrishnan and Saleh (2013) established several recurrence relations for the single and product
moments of progressively type-II right-censored order statistics from a generalized half-logistic
distribution. Rao and Rao (2014) used half-logistic distribution to analyze acceptance samples.
Mohan et al. (2016) estimated the scale and shape parameters of GHL using the median ranks
method.

It is advisable to have a plan that helps in accurately estimating the reliability at usual
conditions. Before starting an ALT, a test plan needs to be developed to obtain appropriate
and sufficient information in order to accurately estimate the reliability performance. Different
approaches have been developed for planning experiments on the basis of covariance matrix,
or equivalently, on the basis of Fisher Information (FI) matrix via the optimization of certain
measurements of these matrices. In this paper, we will use both A optimality criterion.

This paper dels with applying GP to analyze CSALT using GHL distribution under pro-
gressive type-II censoring. While, all previous studies dealt with estimating the parameters
only, this study is interested in not only the estimation but also the design of the experiment
by getting the optimal value of the ratio of GP. The paper is organized as follows. In section
2, the used model is explained. Section 3 derives the ML estimators of the model parameters
with their FI matrix, and then the predicted values of the relibility function is obtained. Both
approximate and bootstrap CI are found in section 4. Optimum test plan is developed in section
5. Finally, the simulation studies needed for illustrating the theoretical results are presented in
section 6. We concluded the paper in section 7.

2. The Model

In this section, the GHL distribution, concepts of GP and its application on ALT, progressive
type-II censoring and the assumptions of the experiment are presented.

2.1 Generalized Half Logistic Distribution

The probability density function (pdf) of the generalized half-logistic distribution is given
by (Seo et al. (2013))

f(x) =
β

σ
(

2e−
x
σ

1 + e−
x
σ

)β
1

1 + e−
x
σ

, x > 0, σ, β > 0. (2.1)

The reliability function takes the form

R(x) = (
2e−

x
σ

1 + e−
x
σ

)β. (2.2)

and the corresponding hazard rate is given by

h(x) =
β

σ(1 + e−
x
σ )
. (2.3)

This distribution has increasing hazard rate which is suitable for the concept of ALT.
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2.2 Geometric Process

Lam (1988a,b) introduced the following definition for the geometric process.

Definition
For a sequence of non-negative random variables Xl, l = 1, 2, ... . If they are independent and
the distribution function of Xl is given by F (λl−1x) for l = 1, 2, ..., then Xl, l = 1, 2, ... is called
a geometric process(GP), where λ > 0 is the ratio of the GP.

A GP is (stochastically) increasing if the ratio 0 < λ ≤ 1; it is (stochastically) decreasing
if the ratio λ > 1. A GP will become a renewal process if the ratio λ = 1. Therefore, GP is a
simple monotone process and is a generalization of the renewal process. Thus, the probability
function of xl, could be written as

fXl(x) = λlfX0(λ
lx), l = 1, 2, ... (2.4)

Theorem
When the underlying lifetime distribution is GHL, and the stress level in an ALT is increasing
with a constant, i.e. Vk+1 − Vk = 4V, k = 1, 2, ..., S − 1, then [Xk, k = 0, 1, 2, ..., S] forms
a geometric process, or log linear and GP models are equivalent when the stress increases
arithmetically.

Proof
Assuming that the life characteristic σ of the product at any constant stress level Vk, is a
log-linear function of the stress (Nelson (1990)) in the form:

log(σk) = (a+ bVk),

where a and b are unknown parameters depending on the nature of the product under test.
When k = 0, the above equation depicts the relationship at usual stress level, V0. Then,

log(
σk+1

σk
) = (bVk+1 − bVk) = b4V, orσk+1

σk
= eb4V .

Now, assume that

σk+1

σk
=

1

λ
,

which shows that stress levels increases arithmetically with a constant difference, then

σk =
σk−1

λ
=
σk−2

λ2
= ... =

σ

λk
.

Substituting in the pdf of GHL in equation (2.1),

fXk(x) =
βλk

σ
(

2e−
xλk

σ

1 + e−
xλk

σ

)β
1

1 + e−
xλk

σ

, (2.5)

which could be written in the form

fXk(x) = λkfX0(λ
kx), k = 0, 1, 2, ..., S (2.6)

which is as the same as equation (2.4).
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2.3 Progressive Type-II Censoring

Cohen (1963) was the first who introduced Progressive type-II censoring scheme. It may be
defined as follows:

Definition
Suppose n units are placed on a life test experiment and x1, x2, ..., xn denote the lifetimes of
these n units taken from a population with lifetime distribution function F (x; θ) and density
function f(x; θ), where θ is an unknown parameter(s) of interest. A pre-specified number of
failures, m < n is determined, then it is assumed that at the time of the jth failure, Rj > 0
survived units are randomly removed from the experiment, j = 1, 2, ...,m. It is assumed that
the censoring scheme (R1, R2, ..., Rm) is fixed prior to study, such that m +

∑m
j=1Rj = n.

Data arising from such censored life testing experiment are referred to as progressively type-II
censored data.

Thus, the likelihood based on the observed sample, x(1) < x(2) < ... < x(m) (for convenience
notation are denoted by x1 < x2 < ... < xm) is given by (see Balakrishnan and Aggarwala(2000))

L(θ | x) = C
m∏
i=1

f(xi)[1− F (xi; θ)]
Ri , (2.7)

where C = n(n− 1−R1)...(n−
∑m−1

j=1 (Rj + 1)).
Recently, progressive censoring has been considered by many authors, for example, Balakr-

ishnan and Aggarwala (2000) developed several techniques for analyzing progressive censored
data, and Balakrishnan (2007) made a review on progressive censoring. Balakrishnan and
Cramer (2014) introduced different applications for progressive censoring. Singh et al. (2015a)
estimated flexible Weibull extension distribution under progressive type-II censoring. Singh
et al. (2015b) proposed Bayesian estimation for the exponentiated gamma distribution under
progressive type-II censored samples.

In the field of ALT, several authors considered progressive censoring. For example, Aly
(2008) dealt with step-stress accelerated life test (SSALT) in the case of progressive type-I
censoring using grouped data. It is assumed that the lifetime follows the log-logistic distribution
and number of units removed at each stress is random following binomial distribution. ML
Estimation and optimal test plan are obtained. Zhu and Elsayed (2013) investigated the design
of AL plans under progressive censoring when test units experience competing failure modes and
are subjected to either single or multiple stress types. Mohie El-Din et al. (2016) considered an
extension of the exponential distribution under progressive censoring when applying CSALT.
They estimated the parameters using ML and Bayesian approaches.

2.4 Assumptions

We assume the following assumptions for the CSALT procedure

• A total of N units are divided into n1, n2, ... , nS units where
∑S

k=1 nk = N .

• There are S levels of high stress Vk, k = 1, ..., S in the experiment, and V0 is the stress
under usual conditions, where V0<V1<. . .<VS.

• Each nk, k = 1, . . . , S units in the experiment are run at a pre-specified constant stress
Vk, k = 1, ..., S.



H. M. Aly, S. O. Bleed, H. Z. Muhammed 363

• It is assumed that the stress affected only on the scale parameter of the underlying dis-
tribution.

• The failure times xik, i = 1, ..., nk and k = 1, ..., S at stress levels Vk, k = 1, . . . , S have
the GHL distribution with probability density function

f(xik, λ, σ, β) =
βλk

σ
(

2e−
xikλ

k

σ

1 + e−
xikλ

k

σ

)β
1

1 + e−
xikλ

k

σ

. (2.8)

• At each stress level, there is an experiment with mk failures and Σmk
j=1Rj removals. Without

loss of generality, we can assume that mk = m and nk = n.

3. Maximum Likelihood Estimation

In the case of GHL using GP under progressive type-II censoring, the likelihood has the
form:

L =
S∏
k=1

Ck

m∏
i=1

βλk

σ

(2e−
xikλ

k

σ )β

(1 + e−
xikλ

k

σ )β+1

[
2e−

xikλ
k

σ

1 + e−
xikλ

k

σ

]βRi ,

where Ck = C = n(n− 1−R1)...(n−
∑m−1

j=1 Rj −m+ 1).
Thus, the likelihood function could be written in the form

L =
S∏
k=1

C
m∏
i=1

βλk

σ

(2e−
xikλ

k

σ )β(Ri+1)

(1 + e−
xikλ

k

σ )β(Ri+1)+1

. (3.1)

Taking the logarithm

lnL = S lnC + Sm ln β +
mS(S + 1) lnλ

2
− Sm lnσ +

S∑
k=1

m∑
i=1

β(Ri + 1)[ln 2− xikλ
k

σ
]−

S∑
k=1

m∑
i=1

[β(Ri + 1) + 1][ln(1 + e−
xikλ

k

σ
)]. (3.2)

The first derivatives of the log-likelihood function (3.2) with respect to the unknown parameters
β, σ and λ are

∂ lnL

∂β
=
Sm

β
+

S∑
k=1

m∑
i=1

(Ri + 1) ln(
2δik

1 + δik
), or

β̂ = Sm/
S∑
k=1

m∑
i=1

(Ri + 1) ln(
1 + δik

2δik
), (3.3)
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∂ lnL

∂σ
= −Sm

σ
+

1

σ2

S∑
k=1

m∑
i=1

xikλ
k[β(Ri + 1)− δik]

1 + δik
, or

σ̂ = (
S∑
k=1

m∑
i=1

xikλ
k[β̂(Ri + 1)− δik]

1 + δik
)/Sm, and (3.4)

∂ lnL

∂λ
=
mS(S + 1)

2λ
− 1

σ

S∑
k=1

m∑
i=1

kxikλ
k−1[β(Ri + 1)− δik]

1 + δik
, (3.5)

where δik = e− xikλ
k

σ
.

Solving (3.3), (3.4) and (3.5) numerically using Math-Cade program, the MLE of β, σ and
λ could be obtained as shown in Section (6).
The second partial derivatives of the log-likelihood function (3.2) are as follows

∂2 lnL

∂β2
=
−Sm
β2

,

∂2 lnL

∂β∂σ
=

1

σ2

S∑
k=1

m∑
i=1

(Ri + 1)xikλ
k

1 + δik
,

∂2 lnL

∂β∂λ
= − 1

σ

S∑
k=1

m∑
i=1

k(Ri + 1)xikλ
k−1

1 + δik
,

∂2 lnL

∂σ2
=

Sm

σ2
− 1

σ4

S∑
k=1

m∑
i=1

x2
ikλ

2kδik[β(Ri + 1) + 1]

(1 + δik)2

− 2

σ3

S∑
k=1

m∑
i=1

kxikλ
k[β(Ri + 1)− δik]

1 + δik
,

∂2 lnL

∂σ∂λ
=

1

σ3

S∑
k=1

m∑
i=1

kx2
ikλ

2k−1δik[β(Ri + 1) + 1]

(1 + δik)2

+
1

σ2

S∑
k=1

m∑
i=1

kxikλ
k−1[β(Ri + 1)− δik]

1 + δik
,

∂2 lnL

∂λ2
=
mS(S + 1)

2λ2
− 1

σ2

S∑
k=1

m∑
i=1

kxikλ
k−2

(1 + δik)2
(kxikλ

kδik[β(Ri + 1) + 1]

+σ(k − 1)(1 + δik)[β(Ri + 1)− δik]).
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Therefore, the elements of the FI matrix for the MLE can be obtained as the expectations
of the negative of the second partial derivatives, i.e.,

F =

 f11 f12 f13

f22 f23

f33

 = −E


∂2lnL
∂β2

∂2lnL
∂β∂σ

∂2lnL
∂β∂λ

∂2lnL
∂σ2

∂2lnL
∂σ∂λ

∂2lnL
∂λ2

 . (3.6)

The asymptotic variance-covariance matrix for the MLE is defined as the inverse of the
Fisher information matrix (3.6), i.e.,

Σ = F̂−1. (3.7)

Prediction under usual stress level
Under the usual stress V0, the predicted parameter σ0 will be estimated by

σ̂0 = (
m∑
i=1

xi0[β̂(Ri + 1)− δi0]

1 + δi0
)/Sm, and (3.8)

the MLE of the reliability function at the lifetime x0, is given by

R̂0(x0) = (
2e
− x
σ̂0

1 + e
− x
σ̂0

)β̂. (3.9)

4. Confidence Intervals

In this section, we construct the approximate confidence intervals (CIs) for the parameters
based on the asymptotic distributions of the estimators, and also the CIs using the parametric
bootstrap approach.

4.1 Approximate Confidence Intervals

As shown in section (3), the MLEs Θ̂ are non-linear functions of random quantities, which
make it virtually impossible to find their exact marginal/joint distributions in order to con-
struct CIs. It is known that as the sample size grows, statistical inference about the unknown
parameters can be based on the asymptotic normality of the MLEs. Thus, the vector Θ̂ is
assumed to be approximately distributed as a multivariate normal with mean vector Θ and
variance-covariance matrix I−1

n (Θ). For more details on approximate CI, see Han and Kundu
(2015).

In this subsection, we construct the approximate CIs for Θ as follows:
Let Θ = [β, σ, λ] and let W be a function of Θ. Then

var(Ŵ ) = [
∂W (Θ)

∂Θ
]
′
ΣΘ̂[

∂W (Θ)

∂Θ
],
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where

ΣΘ̂ =

 var(β̂) cov(β̂, σ̂) cov(β̂, λ̂)

var(σ̂) cov(σ̂, λ̂)

var(λ̂)

 .

Using the asymptotic theory of MLE, the CI of W is given by

Ŵ ± z1−α/2
√
var(Ŵ ). (4.1)

4.2 Bootstrap Confidence Intervals

Since all the information we have about the population is contained in the sample, bootstrap
methods treat the sample as if it were the population. (see Efron and Tibshirani (1993) for
details).

Percentile Bootstrap Confidence Intervals
To construct a two sided 100(1 − α) percentile bootstrap (PB) CI for the parameter Θ (in

our case, Θ = (β, σ, λ)), the following procedure is applied:

1. Estimate the unknown parameter Θ by the MLE Θ̂.

2. Using Θ, generate a bootstrap sample x∗ik, i = 1, 2, ...,m, k = 1, 2, ..., S, where x∗ik ∼ GHL
distribution.

3. Get the estimates Θ̂∗ = (β̂∗, σ̂∗, λ̂∗) from the bootstrap sample.

4. Repeat steps 2 and 3 Q=1000 times. Then, we have Q estimates of Θ.

5. Order the bootstrap replications of Θ̂∗ such that Θ̂∗1 ≤ Θ̂∗2 ≤ ... ≤ Θ̂∗Q.

6. The lower and upper confidence bounds are the Qα
2

and Q(1 − α
2
) ordered elements,

respectively. Then, the 100 percent PB-CI for Θ is given by (Θ̂∗Q−α
2
, Θ̂∗Q(1−α

2
)).

T-Bootstrap Confidence Intervals
The t-bootstrap (TB) CI for Θ is given by the following procedure:

1. Repeat steps 1 and 2 in PB method.

2. Get the estimate Θ̂∗ and compute var(Θ̂∗) (in our case, var(β̂∗), var(σ̂∗), var(λ̂∗)) using
the observed Fisher information matrix

3. Compute the statistic T ∗Q = Θ̂∗−Θ̂√
var(Θ̂∗)

.

4. Repeat steps 2 and 3 Q times.

5. Order the bootstrap replications of T ∗ such that T ∗1 ≤ T ∗2 ≤ ... ≤ T ∗Q.

6. The lower and upper critical values are the Qα
2
th and Q(1 − α

2
)th elements, respectively.

These critical values are used instead of those of T-tables. Thus, the (1− α)100 percent
bootstrap-t interval for Θ will be in the form

[Θ̂ + t∗Q−α
2

√
var(Θ̂), Θ̂ + t∗Q(1−α

2
)

√
var(Θ̂)].
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Alternatively, we can estimate symmetric critical values by:

1. Repeat steps 1 till 4 in the above method.

2. Order the bootstrap replications such that |t∗1| ≤ |t∗2| ≤ ... ≤ |t∗Q|. In this case, the
lower and upper critical values are −|t∗Q(1−α)| and |t∗Q(1−α)|. Then, the 100(1− α) percent
bootstrap-p interval for Θ has the form

[Θ̂− |t∗Q(1−α)|
√
var(Θ̂), Θ̂ + |t∗Q(1−α)|

√
var(Θ̂)].

5. Optimum Test Plan

This section is devoted to give the idea of finding the optimal value of λ, the GP ratio. In
the field of life testing, it is known that designing the test before running the experiment is very
important. In our case when applying ALT using GP, it is better to find a reasonable value of
λ in order to get accurate results. We will use A optimality criterion.

The A optimality criterion is also known as trace criterion. It maximizes the sum of the
diagonal entries of FI. The trace of FI, could be written as:

A = f11 + f22 + f33.

Thus,

∂A

∂λ
= f

′

11 + f
′

22 + f
′

33

= − 1

σ5

S∑
k=1

m∑
i=1

kx3
ikλ

3k−1δik(δik − 1)[β(Ri + 1) + 1]

(1 + δik)3

− 4

σ4

S∑
k=1

m∑
i=1

kx2
ikλ

2k−1δik[β(Ri + 1) + 1]

(1 + δik)2
+

2

σ3

S∑
k=1

m∑
i=1

kxikλ
k−1[δik − β(Ri + 1)]

(1 + δik)

2

+
mS(S + 1)

λ3
− 5

σ2

S∑
k=1

m∑
i=1

k2(k − 1)x2
ikλ

2k−3δik[β(Ri + 1) + 1]

(1 + δik)2

+
1

σ

S∑
k=1

m∑
i=1

k(k − 1)(k − 2)xikλ
k−3[δik − β(Ri + 1)]

(1 + δik)2

+
1

σ3

S∑
k=1

m∑
i=1

k3x3
ikλ

3k−3δik(δik − 1)[β(Ri + 1) + 1]

(1 + δik)3
.

The optimal value of λ, λ∗ is found by solving the equation

∂A

∂λ
= 0. (5.1)

We can also get the optimum value of Ri, i = 1, 2, ...,m, as

R∗i (xik) = (
2e−

xikλ
∗k

σ

1 + e−
xikλ

∗k
σ

)β. (5.2)
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6. Simulation Studies

This section presents the numerical solutions to obtain the ML estimates of the unknown
parameters β, σ, and λ, Moreover, their mean squared errors (MSE), relative absolute biases
(RAB), CI using each one of the three introduced methods: approximate CI, PB, and TB
methods. In order to explore the effects of several experimental parameters on the performance
of estimation, the initial sample size n was chosen to be 9, 15, and 30. progressively Type-II
censored samples from generalized half logistic distribution with different parameters values were
generated using the algorithm described in Balakrishnan and Aggarwala (2000)and Balakrishnan
(2007). Progressive Type II censoring schemes are chosen arbitrary as shown in Table 1.

The numerical analysis is performed based on 1000 Monte Carlo simulations with B = 1000
bootstrap replications. The actual coverage probabilities of the 95 percentage intervals for each
model parameter were determined empirically as well as the relative absolute bias (RAB), and
MSE associated with each estimator. The results are presented in Tables(1) and (2) along with
the lower (L) and upper (U) bounds of the confidence intervals obtained using the above three
methods.

It can be seen from the tabulated values that the estimates are slightly biased and that the
MSE is very small and sometimes equals zero. Note that the estimates are quite stable and,
more importantly, are close to the true values for the sample sizes considered. We also notice
that the coverage probabilities of the approximate CI, PB and TB methods, are very high and
in general greater than 0.93.

Tables (3) and (4) present the predicted values of the parameter σ of the GHL distribution
and its reliability function using different sample sizes, and censoring schemes. It is seen that
as the point of time, x0 increses, the predicter reliability function, R̂(x0) decreases. Sometimes,
it reaches to zero.

7. Conclusion

In this paper, we have considered the estimation process of accelerated life test using geo-
metric process for the generalized half logistic distribution under progressive type-II censoring.
Point and interval estimations of the model parameters were obtained using the maximum likeli-
hood approach. Prediction of the reliability function is found under the usual stress. Moreover,
the idea of designing the test by searching for the optimal value of the ratio of geometric process
is discussed. We have then conducted a simulation study to assess the performance of all these
procedures. In the case of moderate to large sizes, the estimators give relatively accurate esti-
mation of the parameters and appropriate coverage probabilities. We can say that simulation
results indicate that the proposed geomeric process model works well using the generalized half
logistic distribution under progressive type-II censoring. Thus, the geometric process is a good
alternative to the log linear model that relates a certain parameter of the lifetime distribution
with the high stress.
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tions. Birkhäauser, Boston, Mass, USA.

Balakrishnan, N. and Cramer, E. (2014). The Art of Progressive Censoring: Applications to Reliability

and Quality. New York:Birkhäauser.
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Table 1 : The Coverage Probability (Cov. Prob.) of Approximate 95% C.I, RAB, MSE, and MLEs

for Different Censoring Schemes

N m Scheme Parameter Cov. Approx.CI RAB MSE MLE

Prob. L-B

30 10 (2,0,0,2,0,0,0,2,0,14) λ 0.9410 0.0038-0.0149 0.7580 0.0014 0.0121

β 0.9509 0.0013-0.0064 0.9482 0.0090 0.0052

σ 0.9444 0.0004-0.0007 0.945 0.0001 0.0005

(0,0,1,1,0,0,1,1,1,15) λ 0.9447 0.0231-0.0850 0.4426 0.0005 0.0721

β 0.9426 0.0039-0.0193 0.815 0.0066 0.0185

σ 0.9488 0.0017-0.0037 0.7283 0.0001 0.0027

(5,0,5,0,0,0,0,5,0,5) λ 0.9419 0.0212-0.0762 0.3269 0.0003 0.0663

β 0.9427 0.0066-0.0266 0.7456 0.0056 0.0254

σ 0.9461 0.0016-0.0034 0.7501 0.0001 0.0025

30 8 (8, 0, 0,1,0,4, 1, 8) λ 0.9471 0.0033-0.0099 0.8084 0.0016 0.0096

β 0.9452 0.0022-0.0075 0.9344 0.0087 0.0066

σ 0.9397 0.0001-0.0002 0.9869 0.0001 0.0001

(1,1,1,1,1,1,1,14) λ 0.9477 0.0046-0.0151 0.7304 0.0013 0.0135

β 0.9500 0.0013-0.0056 0.9592 0.0092 0.0041

σ 0.9435 0.0001-0.0003 0.9816 0.0001 0.0002

15 5 (5,1,1,1,2) λ 0.9506 0.0878-0.0922 0.8000 0.0016 0.0900

β 0.9441 0.0038-0.0194 0.162 0.0000 0.0116

σ 0.9406 0.0020-0.0031 0.786 0.0001 0.0021

(1,1,1,1,6) λ 0.9492 0.0173-0.0524 0.0168 0.0000 0.0492

β 0.9396 0.0032-0.0099 0.5379 0.0000 0.0046

σ 0.9496 0.0037-0.0114 0.2457 0.0000 0.0075

(0,0,0,2,8) λ 0.9494 0.0245-0.0656 0.1863 0.0001 0.0593

β 0.9478 0.0035-0.0076 0.5885 0.0000 0.0041

σ 0.9387 0.0027-0.0084 0.444 0.0000 0.0056

(0,0,0,0,10) λ 0.9459 0.0449-0.0995 0.9655 0.0023 0.0983

β 0.9485 0.0010-0.0057 0.8293 0.0001 0.0017

σ 0.9410 0.0024-0.0072 0.5188 0.0000 0.0048

9 3 (1,0,5) λ 0.9467 0.0378-0.0567 0.0131 0.0000 0.0493

β 0.9509 0.0031-0.0049 0.5996 0.0001 0.0040

σ 0.9445 0.0051-0.0069 0.4487 0.0000 0.0055

(0,0,6) λ 0.9463 0.0607-0.0989 0.9321 0.0022 0.0966

β 0.9430 0.0014-0.0034 0.8418 0.0001 0.0016

σ 0.9440 0.0008-0.0040 0.7587 0.0001 0.0024
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Table 2 : The Coverage Probability (Cov. Prob.) of Both P-Bootstrap CI and T-Bootstrap CI for

Different Censoring Schemes

N m Scheme Parameter Cov. TBCI Cov. PBCI

Prob. L-B Prob. L-B

30 10 (2,0,0,2,0,0,0,2,0,14) λ 0.9218 0.0069-0.0173 0.9548 0.0038-0.0149

β 0.9417 0.0019-0.0085 0.9406 0.0013-0.0064

σ 0.9584 0.0002-0.0013 0.9510 0.0004-0.0007

(0,0,1,1,0,0,1,1,1,15) λ 0.9274 0.0700-0.0991 0.9531 0.0231-0.0850

β 0.9426 0.0132-0.0238 0.9305 0.0039-0.0193

σ 0.9222 0.0020-0.0052 0.9511 0.0017-0.0037

(5,0,5,0,0,0,0,5,0,5) λ 0.9480 0.0563-0.0867 0.9429 0.0212-0.0762

β 0.9561 0.0200-0.0345 0.9395 0.0066-0.0266

σ 0.9259 0.0023-0.0043 0.9359 0.0016-0.0034

30 8 (8, 0, 0,1,0,4, 1, 8) λ 0.9364 0.0056-0.0123 0.9341 0.0033-0.0099

β 0.9292 0.0061-0.0114 0.9417 0.0022-0.0075

σ 0.9517 0.0000-0.0015 0.9398 0.0001-0.0002

(1,1,1,1,1,1,1,14) λ 0.9497 0.0035-0.0166 0.9318 0.0046-0.0151

β 0.9297 0.0006-0.0087 0.9438 0.0013-0.0056

σ 0.9527 0.0000-0.0014 0.9403 0.0001-0.0003

15 5 (5,1,1,1,2) λ 0.9262 0.0789-0.0111 0.9411 0.0878-0.0922

β 0.9455 0.0021-0.0145 0.9432 0.0038-0.0194

σ 0.9498 0.0011-0.0056 0.9409 0.0020-0.0031

(1,1,1,1,6) λ 0.9519 0.0292-0.0675 0.9386 0.0173-0.0524

β 0.9572 0.0027-0.0120 0.9490 0.0032-0.0099

σ 0.9385 0.0056-0.0095 0.9385 0.0037-0.0114

(0,0,0,2,8) λ 0.9512 0.0293-0.0711 0.9361 0.0245-0.0656

β 0.9342 0.0036-0.0118 0.9400 0.0035-0.0076

σ 0.9239 0.0034-0.0077 0.9471 0.0027-0.0084

(0,0,0,0,10) λ 0.9246 0.0068-0.0101 0.9384 0.0449-0.0995

β 0.9425 0.0009-0.0104 0.9374 0.0010-0.0057

σ 0.9455 0.0038-0.0058 0.9492 0.0024-0.0072

9 3 (1,0,5) λ 0.9205 0.0293-0.0675 0.9453 0.0378-0.0567

β 0.9486 0.0035-0.0165 0.9416 0.0031-0.0049

σ 0.9294 0.0021-0.0090 0.9468 0.0051-0.0069

(0,0,6) λ 0.9393 0.0766-0.1002 0.9362 0.0607-0.0989

β 0.9424 0.0012-0.0157 0.9379 0.0014-0.0034

σ 0.9486 0.0004-0.0054 0.9398 0.0008-0.0040



374
Inference and Optimal Design of Accelerated Life Test using Geometric Process for

Generalized Half-Logistic Distribution under Progressive Type-II Censoring

Table 3: Estimated σ and R(x) Under Usual Stress Using Different Schemes When N = 30

m Scheme σ̂0 x0 R̂(x0) m Scheme σ x R(x)

0.01 0.9 0.01 0.62

0.51 0.8 0.29 0.38

0.56 0.71 0.44 0.23

0.69 0.64 0.56 0.14

10 (2,0,0,2,0,0,0,2,0,14) 0.045 1.9 0.57 10 (0,0,1,1,0,0,1,1,1,15) 0.038 0.86 0.09

2.62 0.51 1 0.05

3.6 0.45 1.9 0.03

3.82 0.4 3.6 0.02

26.74 0.36 7.24 0.01

32.12 0.32 26.74 0.01

0.01 0.52 0.01 0.62

0.29 0.26 0.29 0.39

0.44 0.13 0.44 0.24

1.9 0.07 0.51 0.15

10 (5,0,5,0,0,0,0,5,0,5) 0.038 2.62 0.03 8 (8, 0, 0,1,0,4, 1, 8) 0.014 0.69 0.09

3.6 0.02 0.86 0.06

3.82 0.01 3.82 0.04

7.24 0 9.71 0.02

9.71 0

26.74 0

0.01 0.74

0.29 0.55

0.51 0.41

8 (1,1,1,1,1,1,1,14) 0.014 0.69 0.30

1 0.23

2.62 0.17

3.82 0.12

9.71 0.09
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Table 4: Estimated σ and R(x) Under Usual Stress Using Different Schemes

N m Scheme σ̂0 x0 R̂(x0) Scheme σ x R(x)

15 5 0.05 0.62 0.05 0.97

7.39 0.38 8.76 0.94

(5,1,1,1,2) 0.028 1.9 0.23 (1,1,1,1,6) 0.153 34.75 0.92

3.6 0.14 66.52 0.89

7.24 0.09 108.9 0.86

15 5 0.05 0.96 0.05 0.97

4.44 0.92 4.44 0.93

(0,0,0,2,8) 0.094 8.76 0.88 (0,0,0,0,10) 0.049 8.76 0.9

17.73 0.84 17.73 0.87

66.52 0.81 66.52 0.84

9 3 0.05 0.97 0.05 0.94

(1,0,5) 0.112 17.73 0.93 (0,0,6) 0.025 4.44 0.88

79.3 0.9 17.73 0.83
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